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The linear stability properties of the Ekman layer in a rapidly rotating gas have been 
computed numerically. The two types of instability present in an Ekman layer of 
a homogeneous fluid, which are usually called classes A and B, respectively, are 
significantly modified by the compressibility. The critical Reynolds number for the 
class A instability is found to first increase and then decrease for increasing values 
of the Mach number. The instability waves of class B are monotonically destabilized 
as the value of the Mach number increases. In  addition, a new class of unstable waves 
appears for a finite value of the Mach number. 

1. Introduction 
Experiments by Faller (1963), Tatro & Mollo-Christensen (1967) and Caldwell & 

Van Atta (1970) and numerical calculations by Faller & Kaylor (1966), Lilly (1966) 
and Spooner & Criminale (1982) show that the Ekman layer in a homogeneous 
rotating fluid exhibits two types of instability. The stability properties of the 
incompressible Ekman layer are also discussed in some detail by Greenspan (1968). 
The experiments indicated that the occurrence of instability depends mainly on local 
flow conditions. The first type of instability (class A), which has the lowest critical 
Reynolds number, is induced by the Coriolis force and appears for a Reynolds number 
of about 56 based on the boundary-layer thickness and the local value of the 
geostrophic swirl velocity outside of the Ekman layer. The critical Reynolds number 
for that type of instability increases linearly with the Rossby number. The other type 
of instability (class B) is essentially an inviscid inflectional instability modified by 
rotation. The critical Reynolds number for the class B type instability is about 125, 
and i t  is virtually independent of the Rossby number. The numerically computed 
critical Reynolds numbers are in good agreement with the experimental findings. Lilly 
(1966) found that the two modes of instability appears for Reynolds numbers larger 
than 55 and 115 respectively. The temporal evolution of a pulse-like initial disturbance 
has been investigated numerically by Spooner & Criminale (1982) ; the continuous 
temporal eigenvalue spectrum has been analysed by Spooner (1982). 

Wave motion in the flow outside of the Ekman layers in a rapidly rotating gas has 
been analysed by Morton & Shaughnessy (1972), Gans (1974, 1975), Warren (1975), 
Lalas (1975), Hultgren (1978) and Miles (1981). 

In  the present paper, the effects of compressibility and heat conduction in a rapidly 
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rotating gas on the stability of the Ekman layer are explored. The stability problem 
is formulated in $2 and the numerical results are discussed in s3 . t  The limitation of 
the analysis, due to the low density, i.e. long mean free path, that is likely to occur 
in a typical gas centrifuge, is discussed in the Appendix. 

2. Formulation 

I n  a frame of reference rotating with the constant angular velocity Q, the motion 
of a compressible, viscous and heat-conducting perfect gas is governed by the 
following equations : 

(2.1) 
DP* --+p*v'u* = 0, 
Dt* 

p* [E+ 252 x (0 x r*) = - vp* +pv2u* + ( i p  + y) V(V. u* ) ,  1 
- c(V. u*)' + p*@ + kVZT*, DT* Dp* 

c p p  Dt* Dt* 
*---.-.-- (2 .3 )  

p* = p*RT". (2.4) 
Equations (2.1)-(2.3) describe the conservation of mass, linear momentum and energy 
respectively; (2.4) is the equation of state; p * ,  u* ,  p* and T* are the density, velocity, 
pressure and temperature fields respectively ; g is the gravitational acceleration ; 
@ is the rate of dissipation of mechanical energy, per unit mass of the gas (cf. Batchelor 
1967, equation (3.4.5)); ,u, 5, cpr k and R are the dynamic shear viscosity, bulk 
viscosity, specific heat a t  constant pressure, thermal conductivity and gas constant 
respectively ; D/Dt* is the material derivative. 

Consider a gas of constant temperature TZ, which is contained in e.g. a cylindrical 
vessel with flat top and bottom walls. The walls of the container are assumed to be 
perfect thermal conductors. The vessel is rotating with the constant angular velocity 
$2 around its axis of symmetry, which is taken to  be the z-axis. Let the bottom of 
the container be located a t  z = 0. If the gas is rotating rigidly with the vessel and 
the rotation is sufficiently rapid for effects of gravity to be negligible, (2.1)-(2.4) show 
that the density field pZ and the pressure field p z  are given by 

where r* = distance from the axis of rotation, (2.7a) 
rg* characteristic distance from the axis of rotation, (2.7b) 

y = ratio of specific heats a t  constant pressure and volume, ( 2 . 7 ~ )  

r,* 52 

(YRT,) 
M = * = Mach number at r* = r:, (2.7d) 

By some external means, which need not be specified for the present purpose, the 
motion of the gas is now made to deviate slightly from rigid-body rotation by a steady 
axisymmetric geostrophic flow field. I n  general, an Ekman boundary layer will then 
be located a t  the horizontal walls. Based on the geostrophic flow, a Rossby number 
can be defined as 

t Note added in proof: Spa11 & Wood (1984) have recently performed similar calculations. 



Stability of compressible Ekrrhan boundary-layer $ow 161 

where Vz(r,*, 0 )  is the azimuthal velocity component of the geostrophic flow field a t  
the edge of the Ekman layer. The Rossby number is taken to  be small. Assuming 
the geostrophic flow to be known, the following expressions for the flow field inside 
the Ekman layer can be derived from (2.1)-(2.4) by using linearized theory: 

(2.9a) 

(2.9b) 

( 2 . 9 ~ )  

( 2 . ~ )  

(2.9e) 

(2.9f 1 

u:, v,*, and w,* are the velocity components in the radial, azimuthal and axial directions 
respectively ; 

(2.10a,) 

is the Ekman number at r" = r$;  

K = (1 +a2)a, a2 = icr(y-- 1 )  M 2 ,  (2.10b, c) 

where is the Prandtl number of the gas. The Ekman number is taken to be small. 
The parameter a2 can be interpreted as a measure of the ratio of the divergence of 
the heat flux and the rate of compression work in the Ekman layer. Note that the 
axial velocity component is O(@),  and therefore does not affect the stability problem 
to lowest order. 

To investigate the stability properties of the laminar Ekman layer, the temporal 
evolution of small perturbations on the steady flow in this layer will be considered. 
Suitable definitions for the non-dimensional variables describing the perturbed flow 
inside the Ekman layer are 

r* = r,*(e,+@r),  length, (2.11a) 

t* = &(RoQ)-'t, time, (2 .11b)  

u* = Ror,*Q(u,+eu), velocity, (2.l lC) 

p* = p&((r,*) (r,*Q)2 [p ,+Ro(p ,+~Rop)] ,  pressure, (2.1 1 d )  

T* = 5"2l;[l+ Ro(T,+ET)] ,  temperature, (2.11 f )  

p* = p',(r:) [p ,+Ro(p ,+~p) l ,  density. (2.1 1 e )  

pm and p a  are the non-dimensional density and pressure fields respectively of the 
rigidly rotating gas. Dependent variables denoted by the subscript zero are associated 
with the steady Ekman layer, and U, p ,  p and Tare the dependent variables describing 
the perturbation flow field. e, is the unit vector in the radial direction. E is a 
non-dimensional amplitude of the perturbation flow field, and is assumed to be small. 
There are thus three small non-dimensional parameters in the problem : E ,  E and Ro. 
For consistency, i.e. in order to obtain a meaningful perturbation problem, one must 
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FIGURE 1. Orientation of the local coordinate system. 

require that the Reynolds number based on the geostrophic swirl velocity a t  the edge 
of the Ekman layer and the local boundary-layer thickness 

Re = Roil& (2.12) 
be finite, however. 

The perturbation motion is governed by the following linearized equations : 

v - u  = 0, (2.13) 

+2e,xu+pe,x (e,xr) = -ReVp+V2u, (2.14) 

T+e;u-- -44a2e;u = V2T, (2.15) dTO1 dz 

p + T  = 0, (2.16) 

where only the leading-order terms in the Rossby number have been retained. e, is 
the unit vector in the axial direction. Because of the term -4a2e;u in (2.15), which 
represents the rate of compression work, the set of equations (2.13)-(2.16) does not 
constitute a local Boussinesq-type approximation. 

The set of equations (2.13)-(2.16) will be analysed by using the method of normal 
modes. The continuous spectrum will not be addressed here, however. It is of 
advantage to introduce a new local coordinate system aligned with the wave fronts 
of the disturbances (cf. figure 1). The local x-coordinate is in the normal direction, 
and the local y-coordinate measures distance along the wave front. New mean and 
perturbation variables are defined as follows : 

(2.17a, b)  

C = u c o s $ + v s i n $ ,  v"=-usin$+vcos$,  iij= w, (2.17c,d,e) 

where $ is the orientation angle defined by the local x-axis and the radial direction 
(see figure 1). Because the perturbation quantities are independent of the y-coordinate, 
a stream function $ can be defined as 

U = uo cos $ + v o  sin $, V = -uo sin $+vo cos $, 

(2.18a, b)  
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Application of the normal-mode assumption, i.e. 

(2.19) 

leads after some algebraic manipulations to the following set of coupled ordinary 
differential equations for the perturbation quantities : 

@V-2k2@”+k4$-i ikRe[(U-c)  ( $ ” - k 2 $ ) -  U”$]+24’-p cos q5 = 0, (2.20) 

4”-k24-ikRe[(U-c)4- V’$]-2$’+gsin$ = 0, (2.21) 

~ - l c 2 ~ - i a k R e [ ( U - c ) ~ - T ~ $ ] + 4 a 2 ( $ ‘  cos $-@ sin #) = 0, (2.22) 

where k is the wavenumber, which is taken to  be real, and c = c, + ic, is the complex 
phase velocity; kci is the growth rate. The prime denotes differentiation with respect 
to the axial coordinate. Equations (2.20)-(2.22) are to be solved subject to the 
boundary conditions 

$ = + ‘ = 4 = p = o  on z = 0 ,  ($,$’,4,p)+O as z++co. (2.23a,b) 

For given values of the parameters u, a2, Re, k and q5, the set (2.20)-(2.22) and the 
boundary conditions (2.23) define an eigenvalue problem for the complex wave speed c .  
The laminar flow field is linearly unstable for a given parameter combination if 
a t  least one eigenmode has kci greater than zero. The critical Reynolds number for 
linear instability of the compressible boundary layer flow depends, in addition to the 
wavenumber k and the angle of orientation q5 on the compressibility and the heat 
conduction through the parameters a2 and a respectively, i.e. 

Re, = Re,(k, u, a2, $). (2.24) 

Note that all the effects of compressibility are described by the single parameter u2. 
This is in contrast with the stability problem for compressible non-rotating parallel 
shear flows where y and M must both be specified (Lin 1966). 

As can be seen from (2.9) and (2.20)-(2.23), the temperature field decouples from 
the velocity field in the limit of a2 tending to zero, i.e. the stability problem for an 
Ekman layer in a homogeneous fluid is recovered. This limit also includes the case 
of a heavy gas, i.e. y-1 4 1, if the Mach number is of order unity. The heavy-gas 
limit is not uniformly valid for large Mach numbers, however. 

3. Results 

The eigenvalues of the problem defined by (2.20)-(2.23) were determined numeri- 
cally. Starting values for the numerical procedure were obtained from asymptotic 
solutions valid in the limit of z tending to infinity. A Runge-Kutta scheme was used 
to  numerically integrate the differential equations towards the wall. Orthogonalization 
of the solution vectors was performed whenever deemed necessary to preserve their 
linear independence. The eigenvalues were determined to three decimal places. 
Eigenvalues and critical Reynolds numbers obtained for a2 = 0 were compared with 
the results for the incompressible case presented by Lilly (1966), Nielsen & True (1978) 
and Gusev & Bark (1980), and good agreement was demonstrated. The details of the 
numerical procedure are given in Moberg (1979). 

Numerical calculations for finite values of the compressibility parameter, a2, are 
shown in figures 2-5. The values of y and u are those for air a t  room temperature, 
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.o 
60" 

FIQIJRE 2. Growth rates kci (solid curves) and phase velocities c, (dashed curves) of the most unstable 
mode as functions of the wavenumber k and orientation angle 4. M = 5 and Re = 90. 

Class A 

M a2 Re, kc 9, Re, 
0 0.000 54.1 0.32 -23" 112.7 
2 0.288 60.9 0.32 -19" 105.3 
5 1.800 66.3 0.37 -11" 85.7 
8 4.608 61.1 0.44 -8" 71.7 

12 10.368 53.3 0.52 -5" 59.6 

Class B Class C 

kc 9 c  Re, k ,  4, 
0.55 7" 
0.58 7" 
0.69 6" - 

0.81 4" 61.5 0.69 -40" 
0.95 3" 52.0 0.85 -43" 

- - - 

- - - 

- - 

TABLE 1 .  Critical Reynolds number, and corresponding wavenumber and orientation angle, as 
functions of the Mach number for air at room temperature 

i.e. y = 1.40 and (r = 0.72. As in the homogeneous-fluid case, i t  was found that more 
than one unstable region may exist in the (k, $)-plane for given values of Re and a'. 
These regions correspond to distinct modes of instability. Figure 2 shows the phase 
velocities and growth rates of the instability modes at a Mach number equal to  five 
and a Reynolds number of 90. The two types of instability modes, commonly labelled 
class A and class B, found in the homogeneous fluid case (Lilly 1966) are also present 
here. The class A instability modes are characterized by phase velocities of order unity 
and small negative angles of orientation. The class B modes have low phase velocities 
and small positive angles of orientation. As can be seen in table 1, the critical 
Reynolds number for class A type instability is, for these values of a2 and 'T, higher 
than the one for the incompressible case. Also, the compressibility and the heat 
conductivity tend to destabilize class B modes. For increasing values of a2, the critical 
Reynolds number decreases and, for a fixed Reynolds number, the growth rate 
increases. As can be seen in figure 3, where the Mach number is the same as in figurc 
2 but the Reynolds number equals 150, the class B modes are clearly more unstable 
than the class A modes. For a homogeneous fluid (Lilly 1966), the growth rates of 
the two modes are of about equal magnitude a t  this Reynolds number. 

As the Mach number is increased, a new type of instability can be observed (see 
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-60" 

FIGURE 3. Same as figure 2 except Re = 150. 

-60" 

FIGURE 4. Same as figure 2 except M = 8 and Re = 65. 

figure 4). These modes have phase velocities of order unity, large negative angles or 
orientation, and wavenumbers that are larger than the ones for class A type 
instability. Henceforth, this mode will be referred to as class C type instability. In 
fact, the presence of this mode can also be inferred from figure 2, but at  that Mach 
number it is subdominant to the class A type instability. For the Mach-number and 
Reynolds-number combination corresponding to figure 4, only class A and class C 
type modes are present. As the Mach number is increased, the growth rates for class 
A modes becomes larger than the ones for class C modes, and also class B type 
instability occurs (see figure 5). In fact, extensive numerical calculations were carried 
out to verify that the class A and B modes reported here are modified A and B type 
waves for the homogeneous fluid case and that the class C mode is not related to those. 

Critical Reynolds numbers for the different instability modes for air at room 
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-60' .o 
60" 

FIGURE 5.  Same as figure 2 except M = 12 and Re = 65. 

temperature have been calculated, and these are shown in table 1 as functions of the 
Mach number. The critical Reynolds number for the class A type instability increases 
with the Mach number up to a Mach number of about five. Thereafter, the class A 
modes are destabilized by further increases in the Mach number. The class B and class 
C type instabilities are continuously destabilized by the effects of compressibility. 
Note that for a Mach number of 12, the class C type modes are the first to become 
unstable. 

4. Summary 
Class A waves are primarily caused by an interaction of the shear force associated 

with the azimuthal velocity component and the Coriolis force (Greenspan 1968). For 
moderate values of the Mach number, the compressibility and the heat conduction 
of the gas tend to  increase the critical Reynolds number for class A type instability. 
For sufficiently large values of the Mach number, however, further increase of the 
Mach number leads to a destabilization of these waves. For air a t  room temperature, 
this change occurs for a Mach number of about five. 

The class B type instability is essentially an inviscid inflectional instability 
associated with the radial velocity distribution (Greenspan 1968). As the Mach 
number is increased, the critical Reynolds number for this type of instability is 
decreased. The class B waves are destabilized by the effects of compressibility and 
heat conduction. 

Anew mode of instability, that does not have a counterpart in the homogeneous-fluid 
case, has been found to occur for finite values of the Mach number. These instability 
waves, labelled class C, have high phase velocities and large negative angles of 
orientation. These instability modes would be clearly distinguishable from the other 
two modes in an experiment. An increase in the Mach number leads to further 
destabilization of these waves. 
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Appendix. Gas centrifuge application 
A technologically important application for the analysis presented here is the 

stability of Ekman-layer flow in gas centrifuges for uranium enrichment. The low 
densities that are likely to occur in the vicinity of the axis of rotation in such a device 
has two effects. The mean free path of the molecules will become large, and the 
thickness of the Ekman layer will increase in that region. 

For the continuum hypothesis to hold, the Knudsen number must be very small, 
i.e. 

where h is the mean free path and L is a characteristic lengthscale of the continuum 
flow field. The mean free path can be calculated using the kinetic theory of dilute 
gases, i.e. by assuming that the gas is in local equilibrium and that the particle 
velocity distribution is a Maxwellian distribution centred on the local continuum 
velocity. The details of such a calculation can be found in Huang (1963, p. 93). Apart 
from a multiplicative factor of order unity, one finds 

Kn = h / L  4 1, (A 1) 

m A%- 
p*na2 ’ 

where nL is the molecular weight and a is the collisional diameter of the molecules. 
The continuum lengthscale of interest here is the Ekman layer thickness, i.e. 

L = (-&)i. 

By using the kinetic theory of dilute gases, the dynamic shear viscosity can be 
estimated (again disregarding a multiplicative factor of order unity) as 

p % p*eA, (A 4) 
(Huang 1963, p. log), where c = (yRT*)i is the adiabatic speed of sound. Combination 
of (2.7d), (A l ) ,  (A 3) and (A 4) gives the following criterion for the validity of the 
continuum assumption : 

The left-hand side of this inequality can be rewritten as 

where the subscript p denotes variables evaluated at  the periphery. As can be seen 
from (A 6), the left-hand side of (A 5) can change an order of magnitude across the 
radial extent of the centrifuge, even for moderate values of the Mach number. 
Presumably, rarified flow will occur in the vicinity of the axis of rotation. The stability 
analysis, which is local, is then only valid for larger radii. The effects of rarified flow 
are usually, even if somewhat incorrectly, ignored in theoretical investigations of the 
gas centrifuge (e.g. Sakurai & Matsuda 1974). I n  addition to the inequality (A 5), the 
Ekman layer must be a boundary layer in the usual sense. This is ensured if the local 
Ekman number (cf. ( 2 . 1 0 ~ ) )  is, as assumed here, vanishingly small. 
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